organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-{1-[(2-Nitrobenzenesulfonamido)methyl]cyclohexyl}acetic acid

Nosheen Kanwal,^a* Erum Akbar Hussain,^a Onur Şahin^b and Orhan Büyükgüngör^b

^aDepartment of Chemistry, Lahore College for Women University, Lahore 54000, Pakistan, and ^bDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey

Correspondence e-mail: nosheen.chem.lcwu@gmail.com

Received 2 December 2011; accepted 3 December 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.040; wR factor = 0.110; data-to-parameter ratio = 19.2.

In the title compound, $C_{15}H_{20}N_2O_6S$, the C-SO₂-NH-C torsion angle is $64.54 (14)^{\circ}$. In the molecule, there is a bifurcated N-H···(O,O) hydrogen bond, forming S(7) rings. In the crystal, inversion dimers are formed via $O-H \cdots O$ hydrogen bonds involving the carboxyl group, so forming $R_2^2(8)$ rings. These dimers are further linked via pairs of C-H···O hydrogen bonds, forming a C(6) chain propagating along the c-axis direction.

Related literature

For commercial uses of gabapentin {systematic name: 2-[1-(aminomethyl)cyclohexyl]acetic acid}, see: Taylor et al. (1998); Cesena & Calcutt (1999); Field et al. (2000). For the ability of gabapentin to inhibit voltage-dependent Ca2+ channel currents, see: Stefani et al. (1998); Walker & De Waard (1998); Martin et al. (2000); Sutton et al. (2002). For the graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

$C_{15}H_{20}N_2O_6S$	
$M_r = 356.39$	
Monoclinic, P21/	6

a = 7.7383 (2) Å b = 20.7319(5) Å c = 11.9460 (3) Å $\beta = 116.869 \ (1)^{\circ}$ V = 1709.59 (7) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD area-detector diffractometer 17069 measured reflections	4247 independent reflections 3202 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of

 $\mu = 0.22 \text{ mm}^{-1}$

 $0.37 \times 0.33 \times 0.32$ mm

T = 296 K

 $wR(F^2) = 0.110$ independent and constrained S = 1.02refinement $\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$ 4247 reflections $\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$ 221 parameters

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots A$ N1-H1 \cdots O3 0.790 (19) 2.362 (19) 2.978 (2) 135.6 (18) N1-H1 \cdots O6 0.790 (19) 2.455 (19) 3.050 (2) 133.0 (18) O5-H5 \cdots O6 ⁱ 0.82 1.85 2.6595 (18) 168 C12-H12 \cdots O2 ⁱⁱ 0.93 2.50 3.339 (2) 151					
$\begin{array}{cccccccccccccc} N1-H1\cdots O3 & 0.790 & (19) & 2.362 & (19) & 2.978 & (2) & 135.6 & (18) \\ N1-H1\cdots O6 & 0.790 & (19) & 2.455 & (19) & 3.050 & (2) & 133.0 & (18) \\ O5-H5\cdots O6^{i} & 0.82 & 1.85 & 2.6595 & (18) & 168 \\ O12-H12\cdots O2^{ii} & 0.93 & 2.50 & 3.339 & (2) & 151 \\ \end{array}$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C_{12} = 1112 + O_2 = 0.95 = 2.50 = 5.557(2) = 151$	$N1-H1\cdotsO3$ $N1-H1\cdotsO6$ $O5-H5\cdotsO6^{i}$ $C12-H12\cdotsO2^{ii}$	0.790 (19) 0.790 (19) 0.82 0.93	2.362 (19) 2.455 (19) 1.85 2.50	2.978 (2) 3.050 (2) 2.6595 (18) 3.339 (2)	135.6 (18) 133.0 (18) 168 151

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are grateful to the Department of Chemistry, GC University Lahore, Pakistan, for providing the diffractometer facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2343).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cesena, R. M. & Calcutt, N. A. (1999). Neurosci. Lett. 262, 101-104.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Field, M. J., Hughes, J. & Singh, L. (2000). Br. J. Pharmacol. 131, 282-286.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Martin, D. J., Ibbotson, T. & Scott, R. H. (2000). J. Physiol. 528P, C45.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stefani, A., Spadoni, F. & Bernarrdi, G. (1998). Neuropharmacology, 37, 83-91.
- Sutton, K. G., Martin, D. J., Pinnock, R. D., Lee, K. & Scott, R. H. (2002). Br. J. Pharmacol. 135, 257-265.

Taylor, C. P., Gee, N. S., Su, T.-Z., Kocsis, J. D., Welty, D. F., Brown, J. P., Dooley, D. J., Boden, P. & Singh, L. (1998). Epilepsy Res. 29, 233-249.

Walker, D. & De Waard, M. (1998). TINS, 21, 148-154.

supplementary materials

Acta Cryst. (2012). E68, 086 [doi:10.1107/S160053681105224X]

2-{1-[(2-Nitrobenzenesulfonamido)methyl]cyclohexyl}acetic acid

N. Kanwal, E. Akbar Hussain, O. Sahin and O. Büyükgüngör

Comment

The gabapentin, (systematic name: 2-[1-(aminomethyl)cyclohexyl]acetic acid), is used commercially as an anti-convulsant drug and was originally developed for the treatment of spasticity and partial epilepsy (Taylor *et al.*, 1998; Cesena & Calcutt, 1999; Field *et al.*, 2000). Various studies have been undertaken to investigate possible mechanisms of this drug's action. Stefani *et al.* (1998) were the first to demonstrate that gabapentin inhibits voltage-dependent Ca^{2+} channel currents recorded from cortical neurons. This ability of gabapentin to inhibit Ca^{2+} channels has also been demonstrated by number of other groups (Walker & De Waard, 1998; Martin *et al.*, 2000; Sutton *et al.* 2002). However, the drug has poor oral bioavailability and is difficult to synthesize hence, SAR and structural studies on new derivatives of gabapentin is an attractive area of research in medicinal chemistry. Herein, we report on an efficient synthesis and the crystal structure of a new sulfonamide derivative of gabapentin.

The molecular structure of the title compound is shown in Fig. 1. The conformation of the N1—C9 bond in the C—SO₂—NH—C segment has *gauche* torsions with respect to the S=O bonds. The molecules are twisted at the S1 atom with the C10—S1—N1—C9 torsional angle being 64.54 (14)°. The dihedral angle between the sulfonyl benzene ring and the –SO₂—NH—C (S1,N1,C9) segment is 86.07 (14)°. The values of the ring puckering parameters: $Q_T = 0.555$ (2) Å, $\theta = 175.8$ (2)° and $\phi = 328$ (3)° (Cremer & Pople, 1975), indicate that the cyclohexane ring has a chair conformation. As shown in Fig. 1 and Table 1, bifurcated intramolecular N1—H1···O3 and N1—H1···O6 hydrogen bonds produce S(7) rings (Bernstein *et al.*, 1995).

In the crystal, hydroxyl O5 acts as a hydrogen-bond donor to the carbonly O atom, $O6^{i}$, so forming an inversion dimer with an $R_2^{2}(8)$ ring (Table 1 and Fig. 2). As shown in Fig. 2, these dimers are further linked via a C-H···O interaction, so forming a C(6) chain running parallel to [001].

Experimental

Gabapentin (0.171 g, 1.00 mmol) was dissolved in distilled water (10 ml) in a round bottom flask (25 ml). The pH of the solution was maintained at 8–9 using 1 M Na2CO3 solution. The 2-nitrobenzenesulfonyl chloride (0.221 g, 1.00 mmol) was added to the above solution and stirred at room temperature. The reaction completion was monitored by TLC. Upon completion of the reaction the pH was adjusted 1–2, using 1 M HCl solution. The precipitate obtained was filtered, washed with distilled water, dried and recrystallized from methanol to yield colourless crystals.

Refinement

The imine H atom was located from a difference Fourier map and was refined freely. All other H-atoms were included in calculated positions and refined using a riding model: O-H = 0.82 Å with $U_{iso}(H) = 1.5U_{eq}(O)$, and C-H = 0.93 and 0.97 Å for H(aromatic) and H(methylene), respectively, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. A view of the molecular structure of the title molecule, showing displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are indicated by dashed lines.

Fig. 2. A view of the crystal packing of the title compound, showing the formation of the $R_2^2(8)$ rings, and the C(7) chain. For the sake of clarity, H atoms not involved in these motifs have been omitted [Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, -y+1/2, z-1/2; see Table 1 for further details].

2-{1-[(2-Nitrobenzenesulfonamido)methyl]cyclohexyl}acetic acid

Crystal data

C15H20N2O6S $M_r = 356.39$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc *a* = 7.7383 (2) Å b = 20.7319 (5) Å *c* = 11.9460 (3) Å $\beta = 116.869 (1)^{\circ}$ $V = 1709.59 (7) \text{ Å}^3$ Z = 4

Data collection

3202 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.022$
$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
$h = -10 \rightarrow 10$
$k = -27 \rightarrow 27$
$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from neighbouring sites

F(000) = 752 $D_{\rm x} = 1.385 {\rm Mg m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 5311 reflections $\theta = 2.9 - 27.2^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.37 \times 0.33 \times 0.32 \text{ mm}$

$wR(F^2) = 0.110$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0492P)^2 + 0.4452P]$ where $P = (F_o^2 + 2F_c^2)/3$
4247 reflections	$(\Delta/\sigma)_{max} < 0.001$
221 parameters	$\Delta \rho_{\text{max}} = 0.29 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.32 \ e \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates an	d isotropic or eq	uivalent isotropic d	lisplacement	parameters ((A^2))
	, , ,	4				_

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.2548 (2)	0.54510(7)	0.24581 (13)	0.0348 (3)
C2	0.1197 (2)	0.59198 (8)	0.14519 (15)	0.0438 (4)
H2A	0.1787	0.6344	0.1619	0.053*
H2B	0.1059	0.5781	0.0640	0.053*
C3	-0.0799 (3)	0.59682 (9)	0.13939 (18)	0.0553 (4)
H3A	-0.1568	0.6283	0.0765	0.066*
H3B	-0.1449	0.5554	0.1153	0.066*
C4	-0.0631 (3)	0.61664 (10)	0.2658 (2)	0.0656 (5)
H4A	-0.0060	0.6593	0.2871	0.079*
H4B	-0.1912	0.6185	0.2615	0.079*
C5	0.0607 (3)	0.56932 (10)	0.36644 (19)	0.0638 (5)
H5A	-0.0033	0.5277	0.3493	0.077*
H5B	0.0743	0.5841	0.4471	0.077*
C6	0.2613 (3)	0.56180 (9)	0.37290 (15)	0.0498 (4)
H6A	0.3309	0.5281	0.4327	0.060*
H6B	0.3327	0.6017	0.4036	0.060*
C7	0.4633 (2)	0.55220 (8)	0.26081 (15)	0.0441 (4)
H7A	0.5016	0.5971	0.2766	0.053*
H7B	0.5509	0.5275	0.3333	0.053*
C8	0.4837 (2)	0.52997 (8)	0.14850 (17)	0.0453 (4)
С9	0.1812 (2)	0.47606 (7)	0.20560 (14)	0.0371 (3)
H9A	0.0581	0.4708	0.2075	0.045*
H9B	0.1595	0.4694	0.1199	0.045*
C10	0.0958 (2)	0.31795 (7)	0.19092 (14)	0.0377 (3)
C11	0.1750 (2)	0.27787 (7)	0.13323 (14)	0.0408 (3)

supplementary materials

0.0613 (3)	0.23949 (8)	0.03334 (17)	0.0548 (4)
0.1174	0.2125	-0.0034	0.066*
-0.1371 (3)	0.24136 (10)	-0.01188 (19)	0.0648 (5)
-0.2155	0.2159	-0.0802	0.078*
-0.2189 (3)	0.28022 (10)	0.0429 (2)	0.0632 (5)
-0.3528	0.2813	0.0116	0.076*
-0.1039 (2)	0.31806 (8)	0.14452 (18)	0.0510 (4)
-0.1610	0.3439	0.1823	0.061*
0.3172 (2)	0.42711 (6)	0.28645 (14)	0.0441 (3)
0.398 (3)	0.4174 (9)	0.2660 (18)	0.054 (6)*
0.3849 (2)	0.27452 (7)	0.17499 (14)	0.0516 (4)
0.4004 (2)	0.32564 (6)	0.40392 (11)	0.0645 (4)
0.1074 (2)	0.38599 (6)	0.37366 (13)	0.0643 (4)
0.47073 (19)	0.32459 (7)	0.18100 (16)	0.0724 (4)
0.4618 (2)	0.22220 (7)	0.19748 (17)	0.0839 (5)
0.4434 (2)	0.56977 (6)	0.05920 (13)	0.0641 (4)
0.4596	0.5525	0.0030	0.096*
0.5377 (2)	0.47314 (6)	0.14477 (13)	0.0626 (4)
0.23737 (6)	0.364280 (19)	0.32720 (4)	0.04464 (13)
	0.0613 (3) 0.1174 -0.1371 (3) -0.2155 -0.2189 (3) -0.3528 -0.1039 (2) -0.1610 0.3172 (2) 0.398 (3) 0.3849 (2) 0.4004 (2) 0.1074 (2) 0.47073 (19) 0.4618 (2) 0.4434 (2) 0.4596 0.5377 (2) 0.23737 (6)	0.0613 (3) $0.23949 (8)$ 0.1174 0.2125 $-0.1371 (3)$ $0.24136 (10)$ -0.2155 0.2159 $-0.2189 (3)$ $0.28022 (10)$ -0.3528 0.2813 $-0.1039 (2)$ $0.31806 (8)$ -0.1610 0.3439 $0.3172 (2)$ $0.42711 (6)$ $0.398 (3)$ $0.4174 (9)$ $0.3849 (2)$ $0.27452 (7)$ $0.4004 (2)$ $0.32564 (6)$ $0.1074 (2)$ $0.38599 (6)$ $0.47073 (19)$ $0.32459 (7)$ $0.4618 (2)$ $0.22220 (7)$ $0.4434 (2)$ $0.56977 (6)$ 0.4596 0.5525 $0.5377 (2)$ $0.47314 (6)$ $0.23737 (6)$ $0.364280 (19)$	0.0613 (3) $0.23949 (8)$ $0.03334 (17)$ 0.1174 0.2125 -0.0034 $-0.1371 (3)$ $0.24136 (10)$ $-0.01188 (19)$ -0.2155 0.2159 -0.0802 $-0.2189 (3)$ $0.28022 (10)$ $0.0429 (2)$ -0.3528 0.2813 0.0116 $-0.1039 (2)$ $0.31806 (8)$ $0.14452 (18)$ -0.1610 0.3439 0.1823 $0.3172 (2)$ $0.42711 (6)$ $0.28645 (14)$ $0.398 (3)$ $0.4174 (9)$ $0.2660 (18)$ $0.3849 (2)$ $0.27452 (7)$ $0.17499 (14)$ $0.4004 (2)$ $0.32564 (6)$ $0.37366 (13)$ $0.47073 (19)$ $0.32459 (7)$ $0.18100 (16)$ $0.4618 (2)$ $0.22220 (7)$ $0.19748 (17)$ $0.4434 (2)$ $0.56977 (6)$ $0.05920 (13)$ 0.4596 0.5525 0.0030 $0.5377 (2)$ $0.47314 (6)$ $0.14477 (13)$ $0.23737 (6)$ $0.364280 (19)$ $0.32720 (4)$

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0359 (7)	0.0320 (7)	0.0359 (7)	-0.0062 (6)	0.0158 (6)	-0.0050 (6)
C2	0.0451 (9)	0.0381 (8)	0.0469 (9)	-0.0023 (7)	0.0198 (7)	0.0030(7)
C3	0.0440 (9)	0.0509 (10)	0.0682 (12)	0.0051 (8)	0.0230 (9)	0.0021 (9)
C4	0.0558 (11)	0.0621 (12)	0.0900 (15)	-0.0012 (9)	0.0428 (11)	-0.0182 (11)
C5	0.0784 (13)	0.0681 (13)	0.0635 (12)	-0.0116 (11)	0.0485 (11)	-0.0197 (10)
C6	0.0591 (10)	0.0487 (9)	0.0400 (8)	-0.0074 (8)	0.0210 (8)	-0.0110 (7)
C7	0.0372 (8)	0.0401 (8)	0.0523 (9)	-0.0092 (6)	0.0177 (7)	-0.0065 (7)
C8	0.0384 (8)	0.0411 (9)	0.0626 (10)	-0.0053 (7)	0.0283 (8)	0.0014 (7)
C9	0.0385 (7)	0.0343 (7)	0.0366 (7)	-0.0066 (6)	0.0152 (6)	-0.0046 (6)
C10	0.0450 (8)	0.0285 (7)	0.0408 (8)	-0.0020 (6)	0.0206 (7)	0.0038 (6)
C11	0.0466 (8)	0.0328 (7)	0.0427 (8)	0.0001 (6)	0.0200 (7)	0.0026 (6)
C12	0.0744 (12)	0.0411 (9)	0.0476 (9)	-0.0029 (8)	0.0265 (9)	-0.0061 (7)
C13	0.0679 (13)	0.0529 (11)	0.0524 (11)	-0.0158 (10)	0.0084 (10)	-0.0034 (9)
C14	0.0453 (10)	0.0577 (12)	0.0723 (13)	-0.0093 (9)	0.0140 (9)	0.0066 (10)
C15	0.0471 (9)	0.0443 (9)	0.0654 (11)	-0.0011 (7)	0.0287 (8)	0.0048 (8)
N1	0.0445 (8)	0.0330 (7)	0.0547 (8)	-0.0023 (6)	0.0223 (7)	0.0002 (6)
N2	0.0531 (8)	0.0444 (8)	0.0598 (9)	0.0074 (7)	0.0277 (7)	-0.0005 (7)
01	0.0750 (9)	0.0464 (7)	0.0474 (7)	0.0032 (6)	0.0059 (6)	0.0072 (6)
O2	0.1011 (11)	0.0500 (7)	0.0670 (8)	-0.0077 (7)	0.0603 (8)	-0.0054 (6)
O3	0.0548 (8)	0.0564 (8)	0.1159 (13)	-0.0022 (6)	0.0474 (8)	-0.0012 (8)
O4	0.0726 (10)	0.0507 (8)	0.1188 (14)	0.0237 (7)	0.0347 (9)	0.0021 (8)
O5	0.0783 (9)	0.0592 (8)	0.0755 (9)	0.0146 (7)	0.0530 (8)	0.0136 (7)
06	0.0811 (9)	0.0444 (7)	0.0816 (9)	0.0067 (6)	0.0537 (8)	0.0045 (6)
S1	0.0601 (3)	0.0345 (2)	0.0397 (2)	-0.00341 (17)	0.02283 (19)	0.00003 (15)

Geometric parameters (Å, °)

C1—C2	1.532 (2)	C9—N1	1.467 (2)
C1—C9	1.5350 (19)	С9—Н9А	0.9700
C1—C6	1.536 (2)	С9—Н9В	0.9700
C1—C7	1.548 (2)	C10-C15	1.386 (2)
C2—C3	1.518 (2)	C10-C11	1.387 (2)
C2—H2A	0.9700	C10—S1	1.7779 (15)
С2—Н2В	0.9700	C11—C12	1.372 (2)
C3—C4	1.513 (3)	C11—N2	1.470 (2)
С3—НЗА	0.9700	C12—C13	1.379 (3)
С3—Н3В	0.9700	C12—H12	0.9300
C4—C5	1.512 (3)	C13—C14	1.360 (3)
C4—H4A	0.9700	C13—H13	0.9300
C4—H4B	0.9700	C14—C15	1.380 (3)
C5—C6	1.527 (3)	C14—H14	0.9300
С5—Н5А	0.9700	C15—H15	0.9300
С5—Н5В	0.9700	N1—S1	1.6084 (14)
С6—Н6А	0.9700	N1—H1	0.790 (19)
С6—Н6В	0.9700	N2—O4	1.2077 (19)
С7—С8	1.493 (2)	N2—O3	1.2167 (19)
С7—Н7А	0.9700	O1—S1	1.4244 (13)
С7—Н7В	0.9700	O2—S1	1.4240 (13)
C8—O6	1.258 (2)	О5—Н5	0.8200
C8—O5	1.271 (2)		
C2—C1—C9	108.72 (12)	H7A—C7—H7B	107.7
C2—C1—C6	109.79 (13)	06—C8—O5	122.54 (16)
C9—C1—C6	111.18 (12)	O6—C8—C7	119.54 (15)
C2—C1—C7	109.67 (12)	O5—C8—C7	117.92 (15)
C9—C1—C7	110.16 (12)	N1—C9—C1	112.64 (12)
C6—C1—C7	107.29 (12)	N1—C9—H9A	109.1
C3—C2—C1	113.41 (13)	С1—С9—Н9А	109.1
С3—С2—Н2А	108.9	N1—C9—H9B	109.1
C1—C2—H2A	108.9	С1—С9—Н9В	109.1
С3—С2—Н2В	108.9	Н9А—С9—Н9В	107.8
C1—C2—H2B	108.9	C15—C10—C11	117.76 (15)
H2A—C2—H2B	107.7	C15—C10—S1	118.65 (13)
C4—C3—C2	110.23 (15)	C11—C10—S1	123.43 (12)
С4—С3—НЗА	109.6	C12—C11—C10	121.73 (16)
С2—С3—НЗА	109.6	C12—C11—N2	116.35 (15)
С4—С3—Н3В	109.6	C10—C11—N2	121.92 (14)
С2—С3—Н3В	109.6	C11—C12—C13	119.16 (18)
НЗА—СЗ—НЗВ	108.1	C11—C12—H12	120.4
C5—C4—C3	110.83 (15)	C13—C12—H12	120.4
С5—С4—Н4А	109.5	C14—C13—C12	120.38 (18)
С3—С4—Н4А	109.5	C14—C13—H13	119.8
С5—С4—Н4В	109.5	C12—C13—H13	119.8
C3—C4—H4B	109.5	C13—C14—C15	120.32 (18)

supplementary materials

H4A—C4—H4B	108.1	C13—C14—H14	119.8
C4—C5—C6	111.75 (16)	C15—C14—H14	119.8
C4—C5—H5A	109.3	C14—C15—C10	120.63 (17)
С6—С5—Н5А	109.3	C14—C15—H15	119.7
C4—C5—H5B	109.3	C10-C15-H15	119.7
С6—С5—Н5В	109.3	C9—N1—S1	120.04 (11)
H5A—C5—H5B	107.9	C9—N1—H1	113.8 (14)
C5—C6—C1	113.24 (14)	S1—N1—H1	110.6 (14)
С5—С6—Н6А	108.9	O4—N2—O3	123.53 (16)
С1—С6—Н6А	108.9	O4—N2—C11	118.41 (15)
С5—С6—Н6В	108.9	O3—N2—C11	118.01 (14)
С1—С6—Н6В	108.9	С8—О5—Н5	109.5
H6A—C6—H6B	107.7	O2—S1—O1	120.24 (9)
C8—C7—C1	113.23 (12)	O2—S1—N1	107.30 (8)
С8—С7—Н7А	108.9	O1—S1—N1	107.49 (8)
С1—С7—Н7А	108.9	O2—S1—C10	106.03 (8)
С8—С7—Н7В	108.9	O1—S1—C10	106.58 (7)
С1—С7—Н7В	108.9	N1—S1—C10	108.81 (7)
C9—C1—C2—C3	69.39 (17)	C10-C11-C12-C13	0.8 (3)
C6—C1—C2—C3	-52.45 (18)	N2-C11-C12-C13	-178.76 (16)
C7—C1—C2—C3	-170.10 (13)	C11—C12—C13—C14	-0.8 (3)
C1—C2—C3—C4	57.0 (2)	C12-C13-C14-C15	-0.2 (3)
C2—C3—C4—C5	-57.7 (2)	C13-C14-C15-C10	1.2 (3)
C3—C4—C5—C6	56.3 (2)	C11-C10-C15-C14	-1.1 (2)
C4—C5—C6—C1	-53.1 (2)	S1-C10-C15-C14	-176.65 (14)
C2-C1-C6-C5	50.00 (18)	C1	139.40 (12)
C9—C1—C6—C5	-70.36 (18)	C12-C11-N2-O4	-52.4 (2)
C7—C1—C6—C5	169.12 (15)	C10-C11-N2-O4	128.05 (18)
C2—C1—C7—C8	-67.57 (17)	C12—C11—N2—O3	125.20 (18)
C9—C1—C7—C8	52.07 (17)	C10-C11-N2-O3	-54.3 (2)
C6—C1—C7—C8	173.23 (14)	C9—N1—S1—O2	-49.77 (14)
C1—C7—C8—O6	-94.18 (18)	C9—N1—S1—O1	179.59 (12)
C1—C7—C8—O5	85.21 (18)	C9—N1—S1—C10	64.54 (14)
C2-C1-C9-N1	171.39 (13)	C15—C10—S1—O2	8.75 (15)
C6-C1-C9-N1	-67.63 (17)	C11—C10—S1—O2	-166.48 (13)
C7—C1—C9—N1	51.19 (17)	C15-C10-S1-O1	137.98 (13)
C15—C10—C11—C12	0.2 (2)	C11-C10-S1-O1	-37.26 (15)
S1-C10-C11-C12	175.44 (13)	C15-C10-S1-N1	-106.38 (13)
C15-C10-C11-N2	179.68 (14)	C11—C10—S1—N1	78.38 (14)
S1-C10-C11-N2	-5.0 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1…O3	0.790 (19)	2.362 (19)	2.978 (2)	135.6 (18)
N1—H1…O6	0.790 (19)	2.455 (19)	3.050 (2)	133.0 (18)
O5—H5···O6 ⁱ	0.82	1.85	2.6595 (18)	168
C12—H12···O2 ⁱⁱ	0.93	2.50	3.339 (2)	151

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) *x*, -*y*+1/2, *z*-1/2.

